The Safety of WiMAX Insolid Propellant Rocket Production

نویسنده

  • Rocket
چکیده

With the advance in wireless networking, IEEE 802.16 WiMAX technology has been widely deployed for several applications such as “last mile” broadband service, cellular backhaul, and high-speed enterprise connectivity. As a result, military employed WiMAX as a high-speed wireless connection for data-link because of its point to multi-point and non-line-of-sight (NLOS) capability for many years. However, the risk of using WiMAX is a critical factor in some sensitive area of military applications especially in ammunition manufacturing such as solid propellant rocket production. The US DoD policy states that the following certification requirements are met for WiMAX: electromagnetic effects on the environment (E3) and Hazards of Electromagnetic Radiation to Ordnance (HERO). This paper discuses the Recommended Power Densities and Safe Separation Distance (SSD) for HERO on WiMAX systems deployed on solid propellant rocket production. The result of this research found that WiMAX is safe to operate at close proximity distances to the rocket production based on AF Guidance Memorandum immediately changing AFMAN 91-201. Keywords—WiMAX, ammunition, explosive, munition, solidpropellant, safety, rocket, missile

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مروری بر روش‌های مطالعه ترک در مواد پلیمری پرانرژی

Cracking is the breaking of bonds in a part of the propellant polymer due to the existing stresses that change the structure of the propellant polymer and they are classified into two general categories: macrocrack and microcrack. The service life of rocket engines is largely a function of the mechanical properties of the solid rocket propellant, the aging characteristics of the rocket propulsi...

متن کامل

Acoustic-Mean Flow Interaction in Solid Propellant Rocket Motors

There are several sources for pressure oscillations in solid propellant rocket motors. Oscillatory flow field is one of them. Free shear layers in motor flow field cause vortex shedding. End edges of propellant grains and baffle edge in two-segmented motors are samples of such zones. These vortices move from their forming points and strike the field walls. The kinetic energy of vortices change ...

متن کامل

Acoustic-Mean Flow Interaction in Solid Propellant Rocket Motors

There are several sources for pressure oscillations in solid propellant rocket motors. Oscillatory flow field is one of them. Free shear layers in motor flow field cause vortex shedding. End edges of propellant grains and baffle edge in two-segmented motors are samples of such zones. These vortices move from their forming points and strike the field walls. The kinetic energy of vortices change ...

متن کامل

One Dimensional Internal Ballistics Simulation of Solid Rocket Motor

An internal ballistics model has been developed for performance prediction of a solid propellant rocket motor. In this model a 1-D unsteady Euler equation with source terms is considered. The flow is assumed as a non-reacting mixture of perfect gases with space and time varying thermo physical properties. The governing equations in the combustion chamber are solved numerically by using the Steg...

متن کامل

Electrical and Electrostatic Discharge Solid Rocket Booster Ignition

In missile propulsion technology it is conventional to employ solid rocket boosters. These boosters are loaded with solid propellants, which are energetic compositions where raw materials are comprised of solid particulates, such as fuel, and oxidizer particles, in which are dispersed and immobilized throughout a binder (polymeric) matrix. The processability of these compositions is not simple ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013